
KNOWLEDGE | SECURITY 

1 

OWASP API Security Top 10 

Well protected 
Martin Burkhart 

 
 
 
 
 
 
 
 

 
Hackers are increasingly setting their sights on APIs.  
A glance at the OWASP list of vulnerabilities shows  
the points at which developers are required. 

Modern APIs are typically implemented 

as RESTful web services. The SPAs call 

them up directly from the browser, making 

them equally vulnerable to attack as 

traditional web applications. Unfortunately, 

APIs of this kind often exhibit similar or 

even the same vulnerabilities. Another 

aggravating factor is that they are located 

even closer to the sensitive data than was 

previously the case, for example behind a 

Java Enterprise facade. 

In a new API security study, Gartner 

estimates that, by 2021, the greatest attack 

surface in 90 percent of web applications 

will result from exposed APIs. 

According to this, by 2022 the 

abuse of these will be the most 

significant attack vector and 

will lead to data breaches 

globally.  

Even today, significant 

data incidents owing to unsecure 

APIs are being reported, such as the hacking 

of the US Postal Service in 2018 which 

affected the data of 60 million users. The 

reason for the successful attack was the lack 

of underlying access controls for objects. 

Comparison of charts 

xposed APIs are becoming the most 

popular attack surface of web 

applications. OWASP (Open Web 

Application Security Project) is responding 

to this with a new and specialised top ten 

list for API security. 

The original OWASP top ten is a 

widely distributed list of the ten most 

significant vulnerabilities in web 

applications. The list appeared for the 

first time in 2003 and is based on the data 

of hundreds of organisations worldwide. 

It describes every vulnerability, and 

possible countermeasures, in detail. Over 

the years, OWASP has also taken into 

account vulnerabilities of APIs 

(Application Programming Interfaces), 

which are becoming increasingly widely 

used in software development. OWASP 

therefore no longer talks about simply 

applications, but rather “Applications or 

APIs”. Likewise, the organisation has 

incorporated vulnerabilities that are API-

specific, such as “A4 - XML External 

Entities” in the 2017 edition. 

OWASP is now taking a further step 

and, in December 2019, released a separate 

list of top ten vulnerabilities for APIs.

In this, OWASP emphasises the 

increasing importance of API security for 

companies. 

Dedicated security products such as 

web application firewalls (WAF), API 

Gateways and CIAM systems (Customer 

Identity Access Management) may have 

some success in protecting programming 

interfaces. However, it would be negligent 

to rely exclusively on such products. The 

most important protection stems from API 

developers who know the vulnerabilities 

and can therefore prevent them. 

SPAs are fuelling the spread 
of APIs. 

Unlike even ten years ago, nowadays web 

applications are usually single page 

applications (SPAs) that integrate several 

APIs, for example in the form of micro-

services. Web frameworks such as Angular 

or React are used in the development of user 

interfaces. The APIs encapsulate individual 

aspects of business logic. The inter setting 

the elements on the user interface is oriented 

to rich clients. 

When comparing the new top ten list for 

APIs with the current one for web 

applications from 2017 (A1-A10), it is 

clear that several vulnerabilities are the 

same or at least similar: 

– Broken Authentication (API2, A2) 

– Security Misconfiguration (API7, A6) 

– Injection (API8, A1) 

– Insufficient Logging and Monitoring 

(API10, A10) 

One reason for this is likely to be the fact 

that traditional web applications and 

SPAs fundamentally carry out the same 

tasks using APIs. Both approaches 

provide a user interface in web browsers, 

and have to authenticate users. They 

receive user data and manipulate datasets 

in databases. Both run on servers or in 

containers, and are therefore susceptible 

to configuration errors. In the past, and 

today, administrators monitor the 

operation and the security by monitoring 

log data. 

The lists not only have overlapping 

topics, but also a similar priority of 

vulnerabilities. Only in the case of 

injection is it apparent that this is eighth 

place in APIs, but at the top of the web 

applications list. 

E 



 

2 

You might assume that modern web 

frameworks are increasingly taking on 

functions for validating the input data, 

and therefore clients transfer fewer 

malicious strings to the APIs. However, it 

is necessary to take into account the fact 

that native mobile apps or IoT clients also 

use the APIs. Corresponding frameworks 

are missing here. Furthermore, one 

should never rely on validation on the 

client side, since hackers can directly 

attack the APIs, bypassing the 

frameworks. 

API-specific vulnerabilities 

Interestingly, “A4 XML External Entities 

(XEE)” does not appear in the API list. This 

may be due to the decreasing importance of 

SOAP web services. “A7 Cross-Site 

Scripting (XSS)” is also missing from the 

API list. OWASP appears to consider XSS 

purely as a browser problem. It is true that 

APIs do not interpret JavaScript, and are 

therefore not directly susceptible to XSS. 

However, API endpoints should validate 

their input data to ensure that they do not 

contain any JavaScript commands that an 

application could store permanently. 

Depending on the client, the commands, 

and thus XSS, can absolutely be a problem. 

The generic topic “A5 Broken Access 

Control” is divided into different aspects 

in the API list. In this case, OWASP takes 

into account the fundamental structure of 

API calls, and the formats used, such as 

JSON. The organisation differentiates 

unauthorised access according to whether 

the access is to entire objects (API1) or 

whether individual attributes of objects 

are accessed. In the case of the attributes, 

OWASP also differentiates between 

reading (API3) and modification (API6). 

Compared with the OWASP top 10, 

there are also two new additions in the 

form of “API 4 Lack of Resources and 

Rate Limiting” and “API9 Improper 

Assets Management”. This is reasonable 

insofar as API endpoints are located 

closer to the effective infrastructure than 

the URL of a servlet that processes data 

from an HTML format. 

The right security 
infrastructure 

In current technology, security services 

are often designed to be implemented 

upstream, in order that they can benefit 

all applications and interfaces. 

The services include a combination of 

web application firewalls and API 

management, integrated with functions 

for access management (see Fig. 1). 

The functions of an architecture of 

this kind vary depending on the product 

range. In principle, however, it provides 

the possibility of releasing new APIs in a 

targeted manner (API9). The fact that an 

API is available internally does not 

automatically mean that it is enabled for 

public access. API Gateways can issue 

API Keys which allow external 

developers and partners to establish 

clients on the basis of the public APIs. 

In the case of access by a technical 

client with a valid key, the appropriate 

usage policy is applied. Restrictions such as 

throttling or quotas can be applied here 

(API4). If specifications for APIs are 

available, for example in the OpenAPI 

format, the API Gateways can read them 

and ensure that only compliant requests pass 

through. This prevents exploration or 

forceful browsing attacks on APIs owing to 

unprotected, undocumented endpoints, or 

by legacy endpoints or attributes (API9). 

This also allows for correct typing of the 

attributes on the gateway check and 

implement. If the specifications are concise 

and precise, injection attacks can thus be 

prevented (API8). 

 
Summary: OWASP API Security Top 10 
Number Title Description 

API1 Broken Object Level 
Authorisation 

API endpoints receive object IDs without checking whether the user/client is authorised to access said objects. 

API2 Broken 
Authentication 

Authentication logic is often implemented incorrectly. This allows attackers to compromise authentication tokens or to exploit 
errors in the authentication. If the identity of the client or of the user cannot be reliably ascertained, the basis for API security is 
lacking. 

API3 Excessive Data 
Exposure 

Developers generally tend to expose all object characteristics at endpoints, even the sensitive ones. They rely on the client, 
and hope that they will filter the data appropriately prior to displaying it to the user. 

API4 Lack of Resources and 
Rate Limiting 

APIs do not set any limitations with respect to the size and number of resources requested by a client. This can lead to 
impaired performance, or even denial of service (DoS). Furthermore, this can allow for brute force attacks, e.g. on 
passwords. 

API5 Broken Function Level 
Authorisation 

Complex access regulations with different hierarchies, groups, roles and an unclear separation between administrative and 
regulatory functions lead to authorisation errors. Attackers can thus gain access to resources for which they are not 
authorised. 

API6 Mass Assignment Data delivered by the client, e.g. in JSON format, is entered into the data model directly and unfiltered. Attackers can guess 
additional attributes, view them in the documentation, or find them out by means of exploration. They can thus modify object 
attributes to which they should not have access. 

API7 Security 
Misconfiguration 

Unsecure configurations usually result from unsecure default settings, incomplete configurations, publicly available cloud 
storage, incorrectly configured HTTPS headers and methods, CORS regulations that are too open, or error messages that 
give away too much. 

API8 Injection Injection vulnerabilities, e.g. for SQL, NoSQL, LDAP or OS commands, arise if unsecure input data is sent to an interpreter as 
part of a command. An attacker may thus be able to trigger particularly malicious actions and read or change data without 
authorisation. 

API9 Improper Assets 
Management 

APIs tend to expose more endpoints than traditional web applications. Correct and up-to-date documentation is therefore very 
important. An inventory of the hosts and API versions prevents, for example, the publication of APIs that are no longer 
supported, and debugging endpoints. 

API10 Insufficient Logging and 
Monitoring 

Insufficient logging and monitoring, associated with lacking or insufficient integration with incidence response, allow 
attackers to attack systems, become implanted, and attack further targets with the aim of extracting or modifying data. 
Studies show that breaches are often only discovered after 200 days, and even then only from external locations and not 
through internal processes. 

 



KNOWLEDGE | SECURITY 

3 

 

 
Browser Smartphone IoT Ecosystem 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Applications and APIs 

(on-premises or in the cloud) 

 
Web Application Firewall, API Gateway and IAM work hand-in-hand for comprehensive API 
protection (Fig. 1). 

 

 

 

However, the business objects and their 

attributes are unknown to them. 

Therefore, developers have to ensure that 

object IDs that the client delivers are 

effectively approved for the authenticated 

user (API1). This check is also necessary 

when modifying individual attributes 

(API6). When minimising the data 

transmission, developers cannot rely on 

the client, but have to filter out sensitive 

attributes on the API side (API3). 

The way of dealing with API Keys 

is also important. These are explicitly 

not means for authentication, but 

rather serve merely to identify 

technical clients such as a mobile app 

or an SPA. An application must not 

only enable access to APIs on the 

basis of API Keys, but rather must 

ensure reliable user authentication and 

authorisation. Of course, API Keys are 

not part of public cloud storage.  

 

 

CIAM systems are used to manage 

the identity and access rights. They 

authenticate the user (API2) and authorise 

them using standards such as OAuth, 

OpenID Connect or SAML, for access to 

applications and APIs (API5). This also 

allows for implementation of a 

comprehensive single sign on (SSO), and 

for development of standard tasks via 

user self-services. 

Web application firewalls offer a 

large number of protection mechanisms 

against known attacks such as injections, 

XSS or CSRF (API8). Furthermore, they 

have secure basic settings for HTTP 

headers and TLS (API7), as well as 

functions for certificate management, 

using Let’s Encrypt, for example. For 

good API protection, it is necessary to 

ensure that the WAF effectively analyses 

JSON objects and can apply their rules to 

individual attributes. Otherwise, an 

appropriate API security gateway would 

have to take on the work. However, many 

API Gateways focus on API 

management, and put security aspects 

second. 

A dedicated security infrastructure 

simplifies monitoring, troubleshooting and 

forensic analyses (API10). Supplemented 

by SIEM systems, information on different 

components is easy to compile and 

correlate. Furthermore, an alert in the case 

of anomalies makes it possible to leave the 

reactive mode and gain valuable time, in the 

event of an intrusion. 

 

 

In the meantime, many security 

products now use machine learning (ML) 

in order to be able to react to previously 

unknown attacks and situations. For 

individual developers, the use of ML is 

difficult, because the methods require a 

large amount of data and benefit from a 

cross-service perspective. 

The developers’ duty 

Irrespective of external gateways, some 

tasks always remain in the hands of the 

developers. They should generally develop 

software so that it is secure without 

upstream security services. Among other 

things, they should validate inputs, 

irrespective of whether a WAF checks for 

injection attacks. WAFs always have to 

make a compromise between false positives 

and false negatives, and therefore do not 

have a one hundred percent identification 

rate. Changes to the infrastructure may also 

go unnoticed by the developer. Security by 

Design is recommended, rather than 

ensuring security ‘as an afterthought’. 

Vulnerability scanners integrated in the 

build pipeline can help to identify existing 

vulnerabilities in the finished code. 

Developers must absolutely address 

the specialised authorisation of business 

objects. An API Gateway may know the 

endpoints and be able to distinguish 

between GET and UPDATE requests. 

If clients require hard-coded API Keys 

teams must invest in client security in 

order to make attacks such as debugging 

and decompiling of the client codes more 

difficult. 

Attack surface - APIs 

APIs are likely to develop, over the 

coming years, into the main attack 

surface for web applications. OWASP 

is responding to this with a new and 

specialised top ten list for API security. 

Some topics from the new list, such as 

authentication and injection attacks, 

have been dominating web security 

since 2003, when OWASP published 

the first top ten list. 

The vulnerabilities should be 

prevented in particular in the context of 

APIs. Dedicated security products such as 

web application firewalls, API Gateways 

and CIAM systems can contribute to the 

protection of APIs. However, developers 

must not rely solely on products. They are 

still responsible for certain topics, such as 

specialised authorisation of business 

objects, and secure handling of API Keys. 

(rme) 
 
 

Dr Martin Burkhart 

is Head of Product Management 
at Airlock, a security innovation  
of Ergon Informatik AG He initially ran 
IAM integration projects, and has been 
responsible for product management  
for the Airlock Secure Access Hub 
since 2012. 

Web Application 
Firewall 

AP
I 
Ga
te
wa
y 

Identity and 
Access 
Management 


